首页> 外文OA文献 >Understanding plagiarism linguistic patterns, textual features, and detection methods
【2h】

Understanding plagiarism linguistic patterns, textual features, and detection methods

机译:了解窃的语言模式,文字特征和检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plagiarism can be of many different natures, rangingfrom copying texts to adopting ideas, without giving creditto its originator. This paper presents a new taxonomy of plagiarismthat highlights differences between literal plagiarism andintelligent plagiarism, from the plagiarist’s behavioral point ofview. The taxonomy supports deep understanding of different linguisticpatterns in committing plagiarism, for example, changingtexts into semantically equivalent but with different words andorganization, shortening texts with concept generalization andspecification, and adopting ideas and important contributions ofothers. Different textual features that characterize different plagiarismtypes are discussed. Systematic frameworks and methodsof monolingual, extrinsic, intrinsic, and cross-lingual plagiarismdetection are surveyed and correlated with plagiarism types,which are listed in the taxonomy. We conduct extensive studyof state-of-the-art techniques for plagiarism detection, includingcharacter n-gram-based (CNG), vector-based (VEC), syntax-based(SYN), semantic-based (SEM), fuzzy-based (FUZZY), structuralbased(STRUC), stylometric-based (STYLE), and cross-lingualtechniques (CROSS).Our study corroborates that existing systemsfor plagiarism detection focus on copying text but fail to detect intelligentplagiarism when ideas are presented in different words.
机译:抄袭可能具有许多不同的性质,从抄袭文本到采纳思想,而没有给予其创始者任何荣誉。本文提出了一种of窃的新分类法,从the窃者的行为角度出发,该分类法突显了文字窃与智能窃之间的区别。分类法在deep窃时支持对不同语言模式的深入理解,例如,将文本更改为语义等效但具有不同单词和组织的文本,缩短具有概念泛化和规范的文本,并采用其他思想和重要贡献。讨论了表征不同窃类型的不同文本特征。对单语,外在,内在和跨语言ling窃检测的系统框架和方法进行了调查,并将其与分类中列出的窃类型相关联。我们对窃检测进行了广泛的研究,包括基于字符n-gram(CNG),基于矢量(VEC),基于语法(SYN),基于语义(SEM),基于模糊的技术(FUZZY),基于结构(STRUC),基于样式法(STYLE)和跨语言技术(CROSS)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号